Contaminación del aire y asma
Resumen
Los niveles actuales de la contaminación del aire (CA) son responsables de una carga significativa de aumento incidencia de diagnósticos, exacerbaciones y mortalidad por asma.
Los contaminantes ambientales como el ozono (O3), el dióxido de nitrógeno (NO2), el material particulado (PM) especialmente las PM2.5 y el dióxido de sulfuro (SO2), pueden tener un papel relevante en la génesis y agravamiento del asma (en especial las partículas PM diésel).
La exposición prenatal a contaminantes del aire está asociada con sibilancias y asma en la primera infancia. En primera infancia, la exposición a la CA se asocia con el debut de asma antes de la adolescencia, menor desarrollo de la función pulmonar y es un predictor de enfermedad pulmonar en adultos. Finalmente, la exposición a CA en adultos parece estar relacionada con el inicio del asma en individuos mayores.
El desarrollo del asma por la exposición a CA se produce por varios mecanismos. De forma directa, puede inducir la activación del estrés oxidativo, desencadenar mecanismos inmunológicos y activar receptores de canales de potenciales transitorios. De forma indirecta, desencadena cambios epigéneticos y alteración del microbioma pulmonar. Finalmente, la interacción de las partículas diésel con diversos antígenos puede incrementar el potencial antigénico de éstos últimos.
La rápida urbanización, el mayor consumo de energía y el aumento de emisiones actuales, hacen que el tracto respiratorio se encuentre expuesto a mayor cantidad y variedad de CA. Por ello, no sorprende que estemos experimentando mayor incidencia de diagnósticos de asma, hospitalizaciones y exacerbaciones.
Referencias
World Health Organization. Asthma. 2017. Available from www.who.int
Thurston, G.D., Kipen, H., Annesi-Maesano, I., et al. A joint ERS/ATS policy statement: what constitutes an adverse health effect of air pollution? An analytical framework. Eur. Respir. J. 2017;49: 1600419. doi: 10.1183/13993003.00419-2016
Kelly, F.J. and Fussell, J.C. (2011), Air pollution and airway disease. Clin Exp Allergy, 2011;41(8):1059-71. doi: 10.1111/j.1365-2222.2011.03776. x
Cohen, Aaron J., et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015.The Lancet. 2017 May 13; 389(10082): 1907–1918. doi: 10.1016/S0140-6736(17)30505-6
Ortiz C., Linares C, Carmona R, Díaz J. Evaluation of short-term mortality attributable to particulate matter pollution in Spain.Environ Pollut. 2017; 224:541-551. doi: 10.1016/j.envpol.2017.02.037
Díaz et al. Impacto de la contaminación atmosférica sobre la mortalidad diaria a corto plazo en España.Rev Salud ambient.2018;18 (2); 120-136.
World Health Organization, 2013. Review of Evidence on Health Aspects of Air Pollution – REVIHAAP Project. pp. 1–300.
Bontinck, A., et al. Asthma and air pollution: recent insights in pathogenesis and clinical implications. Curr Opin Pulm Med. 2020 Jan;26(1):10-19. doi: 10.1097/MCP.0000000000000644
Muñoz X, Barreiro E, Bustamante V, et al. Diesel exhausts particles: their role in increasing the incidence of asthma. Reviewing the evidence of a causal link. Sci Total Environ Diesel exhausts particles: their role in increasing the incidence of asthma. Reviewing the evidence of a causal link. Sci Total Environ. 2019 Feb 20;652:1129-1138. doi: 10.1016/j.scitotenv.2018.10.188
Patel MM, Chillrud SN, Deepti KC, Ross JM, Kinney PL. Traffic-related air pollutants and exhaled markers of airway inflammation and oxidative stress in New York City adolescents. Environ Res. 2013 Feb;121:71-8. doi: 10.1016/j.envres.2012.10.012
Gallo, V., Dijk, F.N., Holloway, J.W., et al. TRPA1 gene polymorphisms and childhood asthma. Pediatr Allergy Immunol. 2017 Mar;28(2):191-198. doi: 10.1111/pai.12673
Martin, J.G., Panariti, A. Asthma phenotypes: do they matter? Arch Bronconeumol. 2017 Apr;53(4):177-179. doi: 10.1016/j.arbres.2016.11.016
Bowatte G, Lodge CJ, Knibbs LD, et al. Traffic related air pollution and development and persistence of asthma and low lung function. Environ Int. 2018 Apr;113:170-176. doi: 10.1016/j.envint.2018.01.028
Zhang X, Chen X, Weirauch MT, et al. Diesel exhaust and house dust mite allergen lead to common changes in the airway methylome and hydroxymethylome. Environ Epigenetics 2018;4: doi: 10.1093/eep/dvy020
Adar, S.D., Huffnagle, G.B., Curtis, J.L The respiratory microbiome: an underappreciated player in the human response to inhaled pollutants? Ann Epidemiol. 2016 May;26(5):355-9. doi: 10.1016/j.annepidem.2016.03.010
Thavagnanam, S., Fleming, J., Bromley, A., et al. A metaanalysis of the association between caesarean section and childhood asthma. Clin Exp Allergy. 2008 Apr;38(4):629-33. doi: 10.1111/j.1365-2222.2007.02780.x
Cecchi, L.; D’Amato, G.; Ayres, J. G, et al. Projections of the effects of climate change on allergic asthma: the contribution of aerobiology. Allergy. 2010 Sep;65(9):1073-81. doi: 10.1111/j.1398-9995.2010.02423.x
Reinmuth-Selzle K, Kampf CJ, Lucas K, et al. Pollution and Climate Change Effects on Allergies in the Anthropocene: Abundance, Interaction, and Modification of Allergens and Adjuvants. Environ Sci Technol 2017; 51:4119-41. doi: 10.1021/acs.est.6b04908
Muranaka M, Suzuki S, Koizumi K, et al. Adjuvant activity of diesel-exhaust particulates for the production of IgE antibody in mice. J Allergy Clin Immunol
. 1986 Apr;77(4):616-23. doi: 10.1016/0091-6749(86)90355-6
Sagar S, Akbarshahi H, Uller L. Translational value of animal models of asthma: Challenges and promises. Eur J Pharmacol. 2015 Jul 15;759:272-7. doi: 10.1016/j.ejphar.2015.03.037
Acciani TH, Brandt EB, Khurana Hershey GK, et al. Diesel exhaust particle exposure increases severity of allergic asthma in young mice. Clin Exp Allergy. 2013 Dec;43(12):1406-18. doi: 10.1111/cea.12200
Brandt EB, Biagini Myers JM, Acciani TH, et al. Exposure to allergen and diesel exhaust particles potentiates secondary allergen-specific memory responses, promoting asthma susceptibility. J Allergy Clin Immunol. 2015 Aug;136(2):295-303.e7. doi: 10.1016/j.jaci.2014.11.043
Alvarez-Simón D, Muñoz X, Gómez-Ollés S, et al. Effects of diesel exhaust particle exposure on a murine model of asthma due to soybean. PLoS One 2017;12: doi: 10.1371/journal.pone.0179569
Anderson HR, Favarato G, Atkinson RW. Long-term exposure to air pollution and the incidence of asthma: meta-analysis of cohort studies. Air Qual Atmos Health. 2013; 6: 47-56. doi: 10.1007/s11869-014-0265-8
Hehua, Z., Qing, C., Shanyan, G., et al. The impact of prenatal exposure to air pollution on childhood wheezing and asthma: a systematic review. Environ Res. 2017 Nov;159:519-530. doi: 10.1016/j.envres.2017.08.038.
Yang SI, Lee SY, Kim HB, et al. Prenatal particulate matter affects new asthma via airway hyperresponsiveness in schoolchildren. Allergy. 2019 Apr;74(4):675-684. doi: 10.1111/all.13649
Lavigne E, Donelle J, Hatzopoulou M, et al. Spatiotemporal variations in ambient ultrafine particles and the incidence of childhood asthma. Am J Respir Crit Care Med
. 2019 Jun 15;199(12):1487-1495. doi: 10.1164/rccm.201810-1976OC
Yang SI, Lee SY, Kim HB, et al. Prenatal particulate matter affects new
asthma via airway hyperresponsiveness in schoolchildren. Allergy
. 2019 Apr;74(4):675-684. doi: 10.1111/all.13649
Anenberg SC, Henze DK, Tinney V, et al. Estimates of the global burden of ambient PM2.5, ozone, and NO2 on asthma incidence and emergency room visits. Environ Health Perspect. 2018 Oct;126(10):107004. doi: 10.1289/EHP3766.
van Vliet, P., Knape, M., de Hartog, J., et al. Motor vehicle exhaust and chronic respiratory symptoms in children living near freeways. Environ Res. 1997;74(2):122-32. doi: 10.1006/enrs.1997.3757
McConnell, R., Islam, T., Shankardass, K., et al. Childhood incident asthma and traffic-related air pollution at home and school. Environ. Health Perspect. 2010; 118:1021–1026. doi: 10.1289/ehp.0901232
Brauer, M., Hoek, G., Smit, et al. Air pollution and development of asthma, allergy and infections in a birth cohort. Eur Respir J. 2007 May;29(5):879-88. doi: 10.1183/09031936.00083406
Carlsten, C., Dybuncio, A., Becker, A., et al. Traffic-related air pollution and incident asthma in high-risk birth cohort. Occup. Environ. Med. 2011; 8:291–295. doi: 10.1136/oem.2010.055152
Gehring, U., Wijga, A.H., Hoek, G., et al. Exposure to air pollution and development
of asthma and rhinoconjunctivitis throughout childhood and adolescence: a population-based birth cohort study. Lancet Respir. Med. 2015;3(12):933-42. doi: 10.1016/S2213-2600(15)00426-9
Deng, Q., Lu, C., Norbäck, D., et al. Early life exposure to ambient air pollution and childhood asthma in China. Environ. Res. 2015 Nov;143(Pt A):83-92. doi: 10.1016/j.envres.2015.09.032
Rice MB, Rifas-Shiman SL, Litonjua AA, et al. Lifetime air pollution exposure and asthma in a paediatric birth cohort. J Allergy Clin Immunol. 2018 May;141(5):1932-1934.e7. doi: 10.1016/j.jaci.2017.11.062
Pierangeli I, Nieuwenhuijsen MJ, Cirach M, et al. Health equity and burden of childhood asthma - related to air pollution in Barcelona.Environ Res.2020 Jul;186:109067. doi: 10.1016/j.envres.2019.109067
Jacquemin, B., Siroux, V., Sanchez, M., et al. Ambient air pollution and adult asthma incidence in six European cohorts (ESCAPE). Environ. Health Perspect. 2015; 123:613–621. doi: 10.1289/ehp.1408206
Bowatte G, Lodge CJ, Knibbs LD, et al. Traffic related air pollution and
development and persistence of asthma and low lung function. Environ Int 2018; 113:170–176. doi: 10.1016/j.envint.2018.01.028
Bowatte, G., Erbas, B., Lodge, C.J., et al. Traffic-related air pollution exposure over a 5-year period is associated with increased risk of asthma and poor lung function in middle age. Eur. Respir. J. 2017; 50:1602357.doi: 10.1183/13993003.02357-2016
Khreis H, Cirach M, Mueller N, et al. Outdoor air pollution and the burden of
childhood asthma across Europe. Eur Respir J. 2019 Oct 31;54(4):1802194. doi: 10.1183/13993003.02194-2018
Sofiev M, Winebrake JJ, Johansson L, et al. Cleaner fuels for ships provide
public health benefits with climate tradeoffs. Nat Commun 2018; 9:406. doi: 10.1038/s41467-017-02774-9
Weng CM, Lee MJ, He JR, et al. Diesel exhaust particles up-regulate interleukin-17A expression via ROS/NF- (B in airway epithelium. Biochem Pharmacol 2018; 151:1–8. doi: 10.1016/j.bcp.2018.02.028
Yousefi S, Sharma SK, Stojkov D, et al. Oxidative damage of SP-D abolishes control of eosinophil extracellular DNA trap formation. J Leukoc Biol 2018; 104:205–214. doi: 10.1002/JLB.3AB1117-455R
Li X, Huang L, Wang N, et al. Sulfur dioxide exposure enhances Th2 inflammatory responses via activating STAT6 pathway in asthmatic mice. Toxicol Lett 2018; 285:43–50. doi: 10.1016/j.toxlet.2017.12.020
Zheng XY, Ding H, Jiang LN, et al. Association between Air Pollutants and Asthma Emergency Room Visits and Hospital Admissions in Time Series Studies: A Systematic Review and Meta-Analysis. PLoS One, 10 (2015), pp. e0138146. doi: 10.1371/journal.pone.0138146
Martínez-Rivera C, Garcia-Olivé I, Stojanovic Z, et al. Association between air pollution and asthma exacerbations in Badalona, Barcelona (Spain), 2008-2016. Med Clin (Barc). 2019; 152:333-338. doi: 10.1016/j.medcli.2018.06.027
Liu Y, Pan J, Zhang H, et al. Short-term exposure to ambient air pollution and asthma mortality. Am J Respir Crit Care Med 2019; 200:24–32. doi: 10.1164/rccm.201810-1823OC
McCreanor J, Cullinan P, Nieuwenhuijsen MJ, et al. Respiratory effects of exposure to diesel traffic in persons with asthma. N Engl J Med 2007; 357:2348-58. doi: 10.1056/nejmoa071535
Enlaces refback
- No hay ningún enlace refback.