METABOLOMICA Y ASMA

Joaquim Gea, César J. Enríquez Rodríguez, Sergi Pascual Guardia, María Eugenia Navarrete Rouco, Pilar Ausín Herrero

Resumen


El asma bronquial es una entidad de presentación clínica heterogénea, lo que probablemente corresponde a mecanismos biológicos parcialmente diferenciados. Tanto la descripción de dichos mecanismos como la búsqueda de un manejo clínico más diferenciado conllevan la necesidad de definir biomarcadores. Estos pueden ser de perfil convencional (p.ej. los eosinófilos) o derivados de análisis ómicos. La metabolómica estudia los procesos biológicos a través de sus metabolitos, productos intermedios o finales del metabolismo. A través de sus diversas técnicas y en muestras biológicas diversas se han estudiado los metabolitos característicos tanto del asma como de sus fenotipos. Destaca el papel jugado por los fosfolípidos, y las relaciones con el metabolismo de proteínas y ácidos nucleicos, la producción de energía y la inmunidad. Sin embargo, todavía faltan por definir perfiles metabolómicos claros y aclarar numerosos puntos de las vías metabólicas implicadas.



Texto completo:

HTML PDF

Referencias


Kuruvilla ME, Lee FEH, Lee GB. Understanding asthma phenotypes, endotypes, and mechanisms of disease. Clin Rev Allergy Immunol 2019; 56:219–33.

Plaza V, Alobid I, Alvarez C, Blanco M, Ferreira J, García G et al. Spanish asthma Management Guidelines (GEMA) VERSION 5.1. Highlights and controversies. Arch Bronconeumol 2022; 58:150-8.

Global Initiative for Asthma (GINA). Global strategy for asthma management and prevention 2021. Disponible en: www.ginasthma.org. Acceso en Agosto del 2022.

Kaur R, Chupp G. Phenotypes and endotypes of adult asthma: Moving toward precision medicine. J Allergy Clin Immunol 2019; 144:1–12

Kelly RS, Dahlin A, McGeachie MJ, Qiu W, Sordillo J, Wan ES et al. Asthma metabolomics and the potential for integrative omics in research and the clinic. Chest 2017; 151:262–77.

Wang C, Jiang S, Zhang S, Ouyang Z, Wang G, Wang F. Research progress of metabolomics in asthma. Metabolites 2021; 11:567.

Schauer N, Steinhauser D, Strelkov S, Schomburg D, Allison G, Moritz T et al. GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Lett 2005; 579:1332-7.

Gika HG, Theodoridis GA, Wingate JE, Wilson ID. Within-day reproducibility of an LC-MS-based method for metabonomic analysis: application to human urine. J. Proteome Res 2007; 6: 3291-303.

Soga T, Ohashi Y, Ueno Y. Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res 2003; 2: 488-94.

Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon JC et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts». Nat Protoc 2007; 2: 2692-703.

Ravi A, Goorsenberg AW, Dijkhuis A, Dierdorp BS, Dekker T, van Weeghel M et al. Metabolic differences between bronchial epithelium from healthy individuals and patients with asthma and the effect of bronchial thermoplasty. J Allergy Clin Immunol 2021; 148:1236-48.

Lee HS, Seo C, Hwang YH, Shin TH, Park HJ, Kim Y et al. Metabolomic approaches to polyamines including acetylated derivatives in lung tissue of mice with asthma. Metabolomics 2019; 15:8.

Wang Z, Gao S, Xie J, Li R. Identification of multiple dysregulated metabolic pathways by GC-MS-based profiling of lung tissue in mice with PM2.5-induced asthma. Chemosphere 2018; 220:1-10.

Kang YP, Lee WJ, Hong JY, Lee SB, Park JH, Kim D et al. Novel approach for analysis of bronchoalveolar lavage fluid (BALF) using HPLC-QTOF-MS-based lipidomics: Lipid levels in asthmatics and corticosteroid-treated asthmatic patients. J Proteome Res 2014; 13:3919-29.

Tian M, Chen M, Bao YL, Xu CD, Qin QZ, Zhang WX et al. Sputum metabolomic profiling of bronchial asthma based on quadruple time-of-flight mass spectrometry. Int J Clin Exp Pathol 2017; 10:10363-73.

Spahn JD. Asthma biomarkers in sputum. Immunol. Allergy Clin North Am 2007; 27:387-99.

Ntontsi P, Ntzoumanika V, Loukides S, Benaki D, Gkikas E, Mikros E et al. EBC metabolomics for asthma severity. J Breath Res 2020; 14:036007.

Brinkman P, Wagener AH, Hekking PP, Bansal AT, der Zee AHMV, Wang Y et al. Identification and prospective stability of electronic nose (eNose)–derived inflammatory phenotypes in patients with severe asthma. J Allergy Clin Immunol 2019; 143:1811-20.

Sinha A, Desiraju K, Aggarwal K, Kutum R, Roy S, Lodha R et al. Exhaled breath condensate metabolome clusters for endotype discovery in asthma. J Transl Med 2017; 15:1-9.

Peel AM, Wilkinson M, Sinha A, Loke YK, Fowler SJ, Wilson AM. Volatile organic compounds associated with diagnosis and disease characteristics in asthma - A systematic review. Respir Med 2020; 169:105984.

Bian X, Sun B, Zheng P, Li N, Wu JL. Derivatization enhanced separation and sensitivity of long chain-free fatty acids: Application to asthma using targeted and non-targeted liquid chromatography-mass spectrometry approach. Anal Chim Acta 2017; 989:59-70.

Guo C, Sun L, Zhang L, Dong F, Zhang X, Yao L et al. Serum sphingolipid profile in asthma. J Leukoc Biol 2021; 110:53-9.

Chiu CY, Cheng ML, Chiang MH, Wang CJ, Tsai MH, Lin G. Metabolomic analysis reveals distinct profiles in the plasma and urine associated with IgE reactions in childhood asthma. J Clin Med 2020; 9:887.

Jiang T, Dai L, Li P, Zhao J, Wang X, An L et al. Lipid metabolism and identification of biomarkers in asthma by lipidomic analysis. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158853.

Ferraro VA, Carraro S, Pirillo P, Gucciardi A, Poloniato G, Stocchero M et al. Breathomics in asthmatic children treated with inhaled corticosteroids. Metabolites 2020; 10:390.

Chang-Chien J, Huang H, Tsai H, Lo C, Lin W, Tseng Y et al. Metabolomic differences of exhaled breath condensate among children with and without asthma. Pediatr Allergy Immunol 2021; 32:264-72.

Matysiak J, Klupczynska A, Packi K, Mackoviak-Jakubowska A, Breborowicz A, Pawlicka O, Olejniczak K, Kokot ZJ, Matysiak J. Alterations in serum-free amino acid profiles in childhood asthma. Int J Environ Res Public Health 2020; 17:4758.

Turi KN, McKennan C, Gebretsadik T, Snyder B, Seroogy CM, Lemanske RF et al. Unconjugated bilirubin is associated with protection from early-life wheeze and childhood asthma. J Allergy Clin Immunol 2021; 148:128-38.

Li S, Liu J, Zhou J, Wang Y, Jin F, Chen X et al. Urinary metabolomic profiling reveals biological pathways and predictive signatures associated with childhood asthma. J Asthma Allergy 2020; 13:713-24.

Chiu CY, Lin G, Cheng ML, Chiang MH, Tsai MH, Su KW et al. Longitudinal urinary metabolomic profiling reveals metabolites for asthma development in early childhood. Pediatr Allergy Immunol 2018; 29:496-503.

Carraro S, Bozzetto S, Giordano G, El Mazloum D, Stocchero M, Pirillo P et al. Wheezing preschool children with early-onset asthma reveal a specific metabolomic profile. Pediatr Allergy Immunol 2018; 29:375-82.

Chawes BL, Giordano G, Pirillo P, Rago D, Rasmussen MA, Stokholm J et al. Neonatal urine metabolic profiling and development of childhood asthma. Metabolites 2019; 9:185.

Kelly RS, Sordillo JE, Lasky-Su J, Dahlin A, Perng W, Rifas-Shiman SL et al. Plasma metabolite profiles in children with current asthma. Clin Exp Allergy 2018; 48:1297-304.

Liu Y, Zheng J, Zhang HP, Zhang X, Wang L, Wood L et al. Obesity-associated metabolic signatures correlate to clinical and inflammatory profiles of asthma: A pilot study. Allergy Asthma Immunol Res 2018; 10:628-47.

Periyalil HA, Gibson PG, Wood LG Immunometabolism in obese asthmatics: Are We There Yet? Nutrients 2013; 5:3506-30.

Chiu CY, Cheng ML, Chiang MH, Wang CJ, Tsai MH, Lin G. Metabolomic analysis reveals distinct profiles in the plasma and urine associated with IgE reactions in childhood asthma. J Clin Med 2020; 9:887.

Tao JL, Chen YZ, Dai QG, Tian M, Wang SC, Shan JJ et al. Urine metabolic profiles in paediatric asthma. Respirology 2019; 24:572-81.

Papamichael MM, Katsardis C, Erbas B, Itsiopoulos C, Tsoukalas D. Urinary organic acids as biomarkers in the assessment of pulmonary function in children with asthma. Nutr Res 2019; 61:31-40.

Almqvist C, Worm M, Leynaert B. Impact of gender on asthma in childhood and adolescence: A GA2LEN review. Allergy 2007: 63:47-57.

Crestani E, Harb H, Charbonnier LM, Leirer J, Motsinger-Reif A, Rachid R et al. Untargeted metabolomic profiling identifies disease-specific signatures in food allergy and asthma. J Allergy Clin Immunol 2020; 145:897-906.

Van Der Sluijs KF, Van De Pol M, Kulik W, Dijkhuis A, Smids BS, Van Eijk HW et al. Systemic tryptophan and kynurenine catabolite levels relate to severity of rhinovirus-induced asthma exacerbation: A prospective study with a parallel-group design. Thorax 2013; 68:1122-30.

Collipp PJ, Chen SY, Sharma RK, Balachandar V, Maddaiah VT. Tryptophane metabolism in bronchial asthma. Ann Allergy 1975; 35:153-58.

Fogarty, A, Broadfield E, Lewis S, Lawson N, Britton J. Amino acids and asthma: A case-control study. Eur Respir J 2004; 23:565-8.

Sordillo JE, Lutz SM, Kelly RS, McGeachie MJ, Dahlin A, Tantisira K et al. Plasmalogens mediate the effect of age on bronchodilator response in individuals with asthma. Front Med 2020; 7:38.

Miyata J, Fukunaga K, Kawashima Y, Ohara O, Kawana A, Asano K et al. Dysregulated metabolism of polyunsaturated fatty acids in eosinophilic allergic diseases. Prostaglandins Other Lipid Mediat 2020; 150:106477.

Calder PC. Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? Br J Clin Pharmacol 2013; 75:645-62.

Gai XY, Zhang LJ, Chang C, Guo CL, Abulikemu M, Li WX et al. Metabolomic analysis of serum glycerophospholipid levels in eosinophilic and neutrophilic asthma. Biomed Environ Sci 2019; 32:96-106.

Pang Z, Wang G, Wang C, Zhang W, Liu J, Wang F. Serum metabolomics analysis of asthma in different inflammatory phenotypes: A cross-sectional study in Northeast China. BioMed Res Int 2018; 2018:1–14.

Miki H, Nakahashi-Oda C, Sumida T, Shibuya A. Involvement of CD300a phosphatidylserine immunoreceptor in aluminum salt adjuvant-induced Th2 responses. J Immunol 2015; 194:5069-76.

Sabato V, Boita M, Shubber S, Bridts CH, Shibuya A, De Clerck LS et al. Mechanism of phosphatidylserine inhibition of IgE/FcεRI-dependent anaphylactic human basophil degranulation via CD300a. J Allergy Clin Immunol 2014; 134:734-37.

Loureiro CC, Oliveira AS, Santos M, Rudnitskaya A, Todo-Bom A, Bousquet J et al. Urinary metabolomic profiling of asthmatics can be related to clinical characteristics. Allergy 2016; 71:1362-5.

Reinke SN, Gallart-Ayala H, Gómez C, Checa A, Fauland A, Naz S et al. Metabolomics analysis identifies different metabotypes of asthma severity. Eur Respir J 2017; 49:1601740.

Ray A, Oriss TB, Wenzel SE. Emerging molecular phenotypes of asthma. Am J Physiol Lung Cell Mol Physiol 2015; 308:L130-40

Sutherland ER, Goleva E, King TS, Lehman E, Stevens AD, Jackson LP

et al. Cluster analysis of obesity and asthma phenotypes. PLoS One 2012; 7:e36631.

Holguin F, Bleecker ER, Busse WW, Calhoun WJ, Castro M, Erzurum SC et al. Obesity and asthma: an association modified by age of asthma onset. Allergy Clin Immunol 2011; 127:1486-93.

Beuther DA, Weiss ST, Sutherland DR. Obesity and asthma. Am J Respir Crit Care Med 2006; 174:112-9.

Winnica D, Corey C, Mullett S, Reynolds M, Hill G, Wendell S et al. Bioenergetic differences in the airway epithelium of lean versus obese asthmatics are driven by nitric oxide and reflected in circulating platelets. Antioxid Redox Signal 2019; 31:673-86.

Maniscalco M, Paris D, Melck DJ, D’Amato M, Zedda A, Sofia M et al. Coexistence of obesity and asthma determines a distinct respiratory metabolic phenotype. J Allergy Clin Immunol 2017; 139:1536-47.

Liang Y, Gai XY, Chang C, Zhang X, Wang J, Li TT. Metabolomic profiling differences among asthma, COPD, and healthy subjects: A LC-MS-based metabolomic analysis. Biomed Environ Sci 2019; 32:659-72.

Ghosh N, Choudhury P, Kaushik SR, Arya R, Nanda R, Bhattacharyya P et al. Metabolomic fingerprinting and systemic inflammatory profiling of asthma COPD overlap (ACO). Respir Res 2020; 21:1-16.

Maniscalco M, Paris D, Melck DJ, Molino A, Carone M, Ruggeri P et al. Differential diagnosis between newly diagnosed asthma and COPD using exhaled breath condensate metabolomics: A pilot study. Eur Respir J

; 51:1701825.

Adamko DJ, Nair P, Mayers I, Tsuyuki RT, Regush S, Rowe BH. Metabolomic profiling of asthma and chronic obstructive pulmonary disease: A pilot study differentiating diseases. J Allergy Clin Immunol 2015; 136:571-80.

He Y, Wen Q, Yao F, Xu D, Huang Y, Wang J. Gut-lung axis: the microbial contributions and clinical implications. Crit Rev Microbiol 2017; 43:81–95.

Chunxi L, Haiyue L, Yanxia L, Jianbing P, Jin S. The gut microbiota and respiratory diseases: new evidence. J Immunol Res 2020:2340670.

Kozik AJ, Holguin F, Segal LN, Chatila TA, Dixon AE, Gern JE et al. Microbiome, metabolism, and immunoregulation of asthma: An American Thoracic Society and National Institute of Allergy and Infectious Diseases workshop report. Am J Respir Cell Mol Biol 2022; 67:155-63.

Cuello-Garcia CA, Brożek JL, Fiocchi A, Pawankar R, Yepes-Nuñez JJ, Terracciano L et al. Probiotics for the prevention of allergy: a systematic review and meta-analysis of randomized controlled trials. J Allergy Clin Immunol 2015; 136:952–61.

Li L, Fang Z, Lee Y-K, Zhao J, Zhang H, Lu W et al. Prophylactic effects of oral administration of Lactobacillus casei on house dust mite-induced asthma in mice. Food Funct 2020; 11:9272-84.

Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 2014; 11:506–14.

Barcik W, Boutin RCT, Sokolowska M, Finlay BB. The role of lung and gut microbiota in the pathology of asthma. Immunity 2020; 52:241–55.

Lukacs NW, Huang YJ. Microbiota-immune interactions in asthma pathogenesis and phenotype. Curr Opin Immunol 2020; 66:22–6.

Bisgaard H, Hermansen MN, Bønnelykke K, Stokholm J, Baty F, Skytt NL et al. Association of bacteria and viruses with wheezy episodes in young children: prospective birth cohort study. BMJ 2010; 341:c4978.

Bashir H, Grindle K, Vrtis R, Vang F, Kang T, Salazar L et al. Association of rhinovirus species with common cold and asthma symptoms and bacterial pathogens. J Allergy Clin Immunol 2018; 141:822–4.

Kloepfer KM, Lee WM, Pappas TE, Kang TJ, Vrtis RF, Evans MD et al. Detection of pathogenic bacteria during rhinovirus infection is associated with increased respiratory symptoms and asthma exacerbations. J Allergy Clin Immunol 2014; 133:1301–7.

Heinrich A, Heyl KA, Klaile E, Müller MM, Klassert TE, Wiessner A et al. Moraxella catarrhalis induces CEACAM3-Syk-CARD9-dependent activation of human granulocytes. Cell Microbiol 2016; 18:1570–82.

Zahlten J, Kim Y-J, Doehn J-M, Pribyl T, Hocke AC, García P et al. Streptococcus pneumoniae-induced oxidative stress in lung epithelial cells depends on pneumococcal autolysis and is reversible by resveratrol. J Infect Dis 2015; 211:1822–30.

Carr TF, Alkatib R, Kraft M. 2019. Microbiome in mechanisms of asthma. Clin Chest Med 40:87–96.

Jang SO, Kim HJ, Kim YJ, Kang MJ, Kwon JW, Seo JH et al. Asthma prevention by Lactobacillus rhamnosus in a mouse model is associated with CD4+CD25+Foxp3+ T cells. Allergy Asthma Immunol Res 2012; 4:150–6.

Sagar S, Morgan ME, Chen S, Vos AP, Garssen J, Bergenhenegouwen JV et al. Bifidobacterium breve and Lactobacillus rhamnosus treatment is as effective as budesonide at reducing inflammation in a murine model for chronic asthma. Respir Res 2014; 15:46.

Cervantes-García D, Jiménez M, Rivas-Santiago CE, Gallegos-Alcalá P, Hernández-Mercado A, Santoyo-Payán LS et al. Lactococcus lactis NZ9000 prevents asthmatic airway inflammation and remodelling in rats through the improvement of intestinal barrier function and systemic TGF-β production. Int Arch Allergy Immunol 2021; 182:277–91.

Feleszko W, Jaworska J, Rha RD, Steinhausen S, Avagyan A, Jaudszus A et al. Probiotic-induced suppression of allergic sensitization and airway inflammation is associated with an increase of T regulatory-dependent mechanisms in a murine model of asthma. Clin Exp Allergy 2007; 37:498–505.

Chen YS, Lin YL, Jan RL, Chen HH, Wang JY. Randomized placebo‐controlled trial of lactobacillus on asthmatic children with allergic rhinitis. Pediatr Pulmonol 2010; 45:1111–20.

Drago L, De Vecchi E, Gabrieli A, De Grandi R, Toscano M. Immunomodulatory effects of Lactobacillus salivarius LS01 and Bifidobacterium breve BR03, alone and in combination, on peripheral blood mononuclear cells of allergic asthmatics. Allergy Asthma Immunol Res 2015; 7:409-13.

Elazab N, Mendy A, Gasana J, Vieira ER, Quizon A, Forno E. Probiotic Administration in early life, atopy, and asthma: a meta-analysis of clinical trials. Pediatrics 2013; 132:e666-76.

West CE, Jenmalm MC, Kozyrskyj AL, Prescott SL. Probiotics for treatment and primary prevention of allergic diseases and asthma: looking back and moving forward. Expert Rev Clin Immunol 2016; 12:625–39.

Liu A, Ma T, Xu N, Jin H, Zhao F, Kwok LY et al. Adjunctive probiotics alleviates asthmatic symptoms via modulating the gut microbiome and serum metabolome. Microbiol Spectr 2021; 9:e0085921.

Young RP, Hopkins RJ, Marsland B. The gut-liver-lung axis. modulation of the innate immune response and its possible role in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 2016; 54:161-9.

Roduit C, Frei R, Ferstl R, Loeliger S, Westermann P, Rhyner C et al. High levels of butyrate and propionate in early life are associated with protection against atopy. Allergy 2019; 74:799–809.

Ishida T, Nishiumi S, Tanahashi T, Yamasaki A, Yamazaki A, Akashi T et al. Linoleoyl ethanolamide reduces lipopolysaccharide-induced inflammation in macrophages and ameliorates 2,4-dinitrofluorobenzene-induced contact dermatitis in mice. Eur J Pharmacol 2013; 699:6–1

Roager HM, Licht TR. 2018. Microbial tryptophan catabolites in health and disease. Nat Commun 9:3294.

Hayashi T, Beck L, Rossetto C, Gong X, Takikawa O, Takabayashi K et al. Inhibition of experimental asthma by indoleamine 2,3-dioxygenase. J Clin Invest 2004; 114:270–9.

Xu T, Stewart KM, Wang X, Liu K, Xie M, Ryu JK et al. Metabolic control of T H 17 and induced T reg cell balance by an epigenetic mechanism. Nature 2017; 548:228–33

Park YH, Fitzpatrick A, Medriano CA, Jones DP. High-resolution metabolomics to identify urine biomarkers in corticosteroidresistant asthmatic children. J Allergy Clin Immunol 2017; 139:1518-24.

McGeachie MJ, Dahlin A, Qiu W, Croteau-Chonka DC, Savage J, Wu AC et al. The metabolomics of asthma control: A promising link between genetics and disease. Immun Inflamm Dis 2015; 3:224-38.

Kelly RS, Sordillo JE, Lutz SM, Avila L, Soto-Quiros M, Celedon JC et al. Pharmacometabolomics of bronchodilator response in asthma and the role of age-metabolite interactions. Metabolites 2019; 9:179.

Wendell SG, Baffi C, Holguin F. Fatty acids, inflammation, and asthma. J Allergy Clin Immunol 2014; 133:1255-64.

Esteves P, Blanc L, Celle A, Dupin I, Maurat E, Amoedo N et al. Crucial role of fatty acid oxidation in asthmatic bronchial smooth muscle remodelling. Eur Respir J 2021; 58:2004252.

Zhao JJ, Shimizu Y, Dobashi K, Kawata T, Ono A, Yanagitani N et al. The relationship between oxidative stress and acid stress in adult patients with mild asthma. J Invest Allergol Clin Immunol 2008; 18:41-5.

Grandl G, Wolfrum C. Hemostasis, endothelial stress, inflammation, and the metabolic syndrome. Semin Immunopathol 2018; 40:215-24.

Al-Khami AA, Ghonim MA, Del Valle L, Ibba SV, Zheng L, Pyakurel K et al. Fueling the mechanisms of asthma: Increased fatty acid oxidation in inflammatory immune cells may represent a novel therapeutic target. Clin Exp Allergy 2017; 47:1170-84.

Calder PC. n−3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr 2006; 83:1505S-19S.

Lewis G, Wang B, Jahani PS, Hurrell BP, Banie H, Muench GRA et al. Dietary fiber-induced microbial short chain fatty acids suppress ILC2d-dependent airway inflammation. Front Immunol 2019; 10:2051.

Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R et al. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res 2018; 46:D608–D617.

Xiang YY, Wang S, Liu M, Hirota J, Li J, Ju W et al. A GABAergic system in airway epithelium is essential for mucus overproduction in asthma. Nat Med 2007; 13:862-7.

Gostner JM, Becker K, Kofler H, Strasser B, Fuchs D. Tryptophan metabolism in allergic disorders. Int Arch Allergy Immunol 2016; 169:203-15.

Morris CR, Poljakovic M, Lavrisha L, Machado L, Kuypers FA, Morris SM. Decreased arginine bioavailability and increased serum arginase activity in asthma. Am J Respir Crit Care Med 2004; 170:148-53.

Barnes PJ. Targeting cytokines to treat asthma and chronic obstructive pulmonary disease. Nat Rev Immunol 2018; 18:454-66.

Maarsingh H, Zaagsma J, Meurs, H. Arginine homeostasis in allergic asthma. Eur J Pharmacol 2008; 585:375-84.

Singh VP, Aggarwal R, Singh S, Banik A, Ahmad T, Patnaik BR et al. Metabolic syndrome is associated with increased oxo-nitrative stress and asthma-like changes in lungs. PLoS ONE 2015; 10:e0129850.

Fatani SH. Biomarkers of oxidative stress in acute and chronic bronchial asthma. J Asthma 2014; 51:578-84.

Ercan H, Birben E, Dizdar EA, Keskin O, Karaaslan C, Soyer OU et al. Oxidative stress and genetic and epidemiologic determinants of oxidant injury in childhood asthma. J Allergy Clin Immunol 2006; 118:1097-104.

Prakash Y, Pabelick CM, Sieck G. Mitochondrial dysfunction in airway disease. Chest 2017; 152:618-26.

Schumacker PT, Gillespie MN, Nakahira K, Choi AMK, Crouser ED, Piantadosi CA et al. Mitochondria in lung biology and pathology: More than just a powerhouse. Am J Physiol Cell Mol Physiol 2014; 306:L962–L974.

Manna P, Jain SK. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: Causes and therapeutic strategies. Metab Syndr Relat Disord 2015; 13:423-44.

Ornatowski W, Lu Q, Yegambaram M, Garcia AE, Zemskov EA, Maltepe E et al. Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biol 2020; 36:101679.

Kool M, Willart MA, Van Nimwegen M, Bergen I, Pouliot P, Virchow JC et al. An unexpected role for uric acid as an inducer of T helper 2 cell immunity to inhaled antigens and inflammatory mediator of allergic asthma. Immunity 2011; 34:527-40.

Lambrecht BN, Hammad H. Biology of lung dendritic cells at the origin of asthma. Immunity 2009; 31:412-24.

Hara K, Iijima K, Elias MK, Seno S, Tojima I, Kobayashi T et al. Airway uric acid is a sensor of inhaled protease allergens and initiates type 2 immune responses in respiratory mucosa. J Immunol 2014; 192:4032-42.

Kobayashi T, Kouzaki H, Kita H. Human eosinophils recognize endogenous danger signal crystalline uric acid and produce proinflammatory cytokines mediated by autocrine ATP. J Immunol 2010; 184:6350-8.

Chen CJ, Shi Y, Hearn A, Fitzgerald K, Golenbock D, Reed G et al. MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J Clin Invest 2006; 116:2262-71.

Bacsi A, Pan L, Ba X, Boldogh I. Pathophysiology of bronchoconstriction: Role of oxidatively damaged DNA repair. Curr Opin Allergy Clin Immunol 2016; 16:59-67.

Menzel M, Ramu S, Calvén J, Olejnicka B, Sverrild A, Porsbjerg C et al. Oxidative stress attenuates TLR3 responsiveness and impairs anti-viral mechanisms in bronchial epithelial cells from COPD and asthma patients. Front Immunol 2019; 10:2765.

Numata M, Chu HW, Dakhama A, Voelker DR. Pulmonary surfactant phosphatidylglycerol inhibits respiratory syncytial virus-induced inflammation and infection. Proc Natl Acad Sci USA 2010; 107:320-5.

Mueller M, Brandenburg K, Dedrick R, Schromm AB, Seydel U. Phospholipids inhibit lipopolysaccharide (LPS)-induced cell activation: A role for LPS-binding protein. J Immunol 2005; 174:1091-6.

Jo SH, Kim SD, Kim JM, Lee HY, Lee SY, Shim JW et al. Lysophosphatidylglycerol stimulates chemotactic migration in human natural killer cells. Biochem Biophys Res Commun 2008; 372:147-51.

Gorska MM. Natural killer cells in asthma. Curr Opin Allergy Clin Immunol 2017; 17:50-4.

Worgall TS, Veerappan A, Sung B, Kim BI, Weiner E, Bholah R et al. Impaired sphingolipid synthesis in the respiratory tract induces airway hyperreactivity. Sci Transl Med 2013; 5:186ra67.

Worgall TS. Sphingolipids, ORMDL3 and asthma. Curr Opin Clin Nutr Metab Care 2017; 20:99-103.

Saude EJ, Obiefuna IP, Somorjai RL, Ajamian F, Skappak C, Ahmad T et al. Metabolomic biomarkers in a model of asthma exacerbation: urine nuclear magnetic resonance. Am J Respir Crit Care Med 2009; 179:25-34.

Li J, Li X, Liu X, Wang X, Li J, Lin K et al. Untargeted metabolomic study of acute exacerbation of pediatric asthma via HPLC-Q-Orbitrap-MS. J Pharm Biomed Anal 2022; 215:114737.

Loureiro CC, Duarte IF, Gomes J, Carrola J, Barros AS, Gil AM et al. Urinary metabolomic changes as a predictive biomarker of asthma exacerbation. J Allergy Clin Immunol 2014; 133:261-3.

Ban GY, Cho K, Kim SH, Yoon MK, Kim JH, Lee HY et al. Metabolomic analysis identifies potential diagnostic biomarkers for aspirin-exacerbated respiratory disease. Clin Exp Allergy 2017; 47:37-47.

Alnahas S, Hagner S, Raifer H, Kilic A, Gasteiger G, Mutters R et al. IL-17 and TNF-a are key mediators of Moraxella catarrhalis triggered exacerbation of allergic airway inflammation. Front Immunol 2017; 8:1562.

Dohrman A, Miyata S, Gallup M, Li JD, Chapelin C, Coste A et al. Mucin gene (MUC 2 and MUC 5AC) upregulation by gram-positive and gram-negative bacteria. Biochim Biophys Acta 1998; 1406:251–9.

Quan-Jun Y, Jian-Ping Z, Jian-Hua Z, Yong-Long H, Bo X, Jing-Xian Z et al. Distinct Metabolic Profile of Inhaled Budesonide and Salbutamol in Asthmatic Children during Acute Exacerbation. Basic Clin Pharmacol Toxicol 2017; 120:303-11.

Xiao JY, He J, Huang SM, Chen ZM. Progress in application of metabolomics in childhood bronchial asthma. Zhonghua Er Ke Za Zhi 2022; 60:960-3.

Li H, Duan C, Zhou L, Wang M. Application progress of metabonomics evaluation methods in bronchial asthma. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2021; 33:1021-4.


Enlaces refback

  • No hay ningún enlace refback.